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The Einstein field equation, coupled to the scalar field, is studied in a spherically sym-
metric comoving system. The problem is translated into the language of the Newman
Penrose formalism that is based on the choice of a null tetrad frame. The correspond-
ing (tabulated) Einstein field equation, Bianchi identities and scalar field equation are
explicited in terms of the Weyl and Ricci scalars and discussed. Spherical symmetry
reduces the difficulties but not so far to enable to integrate the scheme in general. The
main result is that static self-gravitation is possible only for massless scalar field. The
static solution is determined. It depends on an arbitrary function that can be interpreted
as radial coordinate. The part of the space–time solution of the problem does not contain
black holes. It is remarked that in the part of the space–time not solution of the problem,
light rays cannot propagate radially but admit circular orbits.

KEY WORDS: self-gravitation; Newman Penrose formalism; trapped surfaces;
black hole.

1. INTRODUCTION

The study of self-gravitational interaction of fields has received great atten-
tion in the literature mainly with regard to the simplest case represented by the
scalar field. The interest is connected also to a better understanding of cosmolog-
ical models, gravitational collapse and black holes formation (Krasinski, 1997;
Weinberg, 1972). In case of spherically symmetric space–time with, a priori, two
independent unknown functions it has indeed been shown that solutions exist for
massless field that may lead to black holes formation (Christodoulou 1986, 1987).
The result has been numerically characterized by a mass scaling exponent asso-
ciated to the formation of black holes (Choptuik, 1993) and it has been extended
to axisymmetric space–time (Abraham and Evans, 1993; Choptuik et al., 2003;
Whang, 2003), to the collapse of fluid (Evans and Coleman, 1994) and to complex
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scalar field (Hirshman and Eardley, 1995a,b). The problem has been studied, in
an elementary way, also in the context of a class of spherically symmetric co-
moving system, a situation that still depends, a priori, on two general functions.
The corresponding case of static massless scalar field, whose solution depends on
an arbitrary function, was studied in Zecca (2001). The cases of the a priori as-
sumption of static massless or massive time-dependent scalar field was discussed
in Zecca (2004). The attention in the two last mentioned papers was however
essentially directed towards the determination of pure analytical solutions of the
problem.

In the present paper, the self-gravitation of scalar field in spherically symmet-
ric comoving system is studied in the language of the Newman Penrose formalism.
Under the choice of a suitable null tetrad frame it is first shown that the symmetry
of the problem implies the independence of the field from the angular coordinates.
This easily follows by applying the Einstein equation and Bianchi identities in
terms of the Weyl and Ricci “scalars,” spin coefficients and directional derivatives
and from some functional identities. The Newman Penrose formalism allows an
alternative way in the solution of the coupled equations. The possibility is ex-
plicited for the completely static situation that has no solution for massive scalar
field, while it is integrated in the massless case in agreement with previous results.
The solution depends on an arbitrary function, with no physical significance, that
can be re-interpreted as the radial coordinate.

The advantage of the Newman Penrose formalism is also of making here
transparent many general aspects concerning light propagation. This is evidenced
by considering the optical scalars equation (and similar equations for other geo-
metrical objects) that are discussed here. In the static case, the space–time solution
does not contain black holes. There are regions of the space–time that are not solu-
tion of the problem, where light rays cannot propagate radially, but where circular
light orbits are possible.

2. THE EQUATIONS IN THE NEWMAN PENROSE FORMALISM

The coupled Einstein and scalar field equations describing the self-gravitation
of the scalar field φ are expressed by

Rµν = −k

(
∂µφ∂νφ − 1

2
m2

0φ
2gµν

)
(1)

∇α∇αφ + m2φ = 0 (k = 8πG/c4) (2)

where m0 is the mass of the particle of the scalar field, ∇α the covariant torsion-
free derivative in the space–time of metric tensor gµν . Equation (1) is the Einstein
field equation having as a source the energy momentum tensor given by Tµν =
∂µφ∂νφ − 1

2gµν(∂αφ∂αφ − m2
0φ

2). Equations (1) and (2) will be studied in the
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spherically symmetric comoving system, with the tensor metric defined by

ds2 = gµν dxµ dxν = dt2 − e�(r,t) dr2 − Y 2(r, t)(dθ2 + sin2 θ d2ϕ), (3)

The energy momentum tensor is automatically conserved, ∇µ Tµν = 0, as a conse-
quence of the validity of the scalar field equation (e.g., Zecca, 2003). The scheme
will be studied by adopting the Newman Penrose (1962) formalism. The null
tetrad frame e

µ
a (the row Latin index run over the tetrad components 1, 2, 3, 4; the

column Greek index over t, r, θ, ϕ) is chosen to be the one originally considered
in Zecca (1993):

eµ
a = 1√

2




1 e−�/2 0 0
1 −e−�/2 0 0
0 0 1 i csc θ/Y

0 0 1 −i csc θ/Y


 (4)

Correspondingly, the directional derivatives are defined by D = e
µ

1 ∂µ,
	 = e

µ

2 ∂µ, δ = e
µ

3 ∂µ, δ� = e
µ

4 ∂µ, while the non-zero spin coefficients resulting
from the earlier choice (for notations and mathematical conventions we follow
Chandrasekhar, 1983) are

ρ = − 1
Y

√
2

(Ẏ + Y ′ e−�/2), µ = 1
Y

√
2

(Ẏ − Y ′e−�/2)

β = −α = 1
Y

√
2

cot θ, ε = −γ = 1
4
√

2
�̇

(5)

(prime and dot mean ∂r , ∂t respectively).
The Einstein field equations can be studied in terms of the component of the

Weyl tensor represented by the complex scalar as ψk, k = 0, 1, 2, 3, and in terms
of the Ricci real and complex scalars. The definition of these scalars and their
expressions obtained from assumptions (1) and (4), are

φ00 = −1

2
R(1)(1) = k

2
(Dφ)2, φ22 = −1

2
R(2)(2) = k

2
(	φ)2

φ02 = −1

2
R(3)(3) = k

2
(δφ)2, φ20 = −1

2
R(4)(4) = k

2
(δ�φ)2

φ01 = −1

2
R(1)(3) = k

2
δφ δ�φ, φ10 = −1

2
R(1)(4) = k

2
Dφ 	φ

φ12 = −1

2
R(2)(3) = k

2
	φ δφ, φ21 = −1

2
R(2)(4) = k

2
	φ δ�φ

φ11 = −1

2

(
R(1)(2) + R(3)(4)

) = k

4
(Dφ	φ + δφδ�φ) (6)

� = 1

12

(
R(1)(2) − R(3)(4)

) = − k

12

(
Dφ	φ − δφ δ�φ − m2

0φ
2
)

The definition Rab = Rµν e
µ
a eν

b has been used. If now one considers the Einstein
field equation in terms of the directional derivatives, spin coefficients, Weyl and
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Ricci scalars (Chandrasekhar, 1983; Newman and Penrose, 1962; Penrose and
Rindler, 1984) one immediately finds in the present scheme:

δφ = δ�φ = 0 =⇒ φ = φ(r, t)
ψ0 = ψ1 = ψ3 = ψ4 = 0, ψ2 = ψ2(r, t).

(7)

As a consequence the expressions (6) greatly simplify. The non-trivial ones are:

φ00 = k
2 (Dφ)2, φ22 = k

2 (	φ)2

φ11 = k
4Dφ	φ, � = k

12 (m2
0φ

2 − Dφ	φ)
(8)

From the results it is clear that, as it is known (e.g. Krasinski, 1997; Zecca,
1993, 2000), the Weyl tensor results to be of Petrov type D (e.g. Chandrasekhar,
1983). The surviving equations are then:

Dρ = ρ2 + 2ερ + φ00 (9)

(D + 	)γ = −4γ ε + φ11 − � + ψ2 (10)

Dµ = ρµ − 2µε + 2� + ψ2 (11)

(δ + δ�)α = µρ + 4α2 + φ11 + � − ψ2 (12)

	µ = −µ2 − 2µγ − φ22 (13)

	ρ = −ρµ + 2γρ − 2� − ψ2 (14)

Dψ2 − 3ρψ2 + 	φ00 − 2ρφ11 + (µ − 4γ )φ00 + 2D� = 0 (15)

	ψ2 + 3µψ2 + Dφ22 + 2µφ11 − (ρ − 4ε)φ22 + 2	� = 0 (16)

D(φ11 + 3�) + 	φ00 = 4ρφ11 − (2µ − 4γ )φ00 (17)

	(φ11 + 3�) + Dφ22 = −4µφ11 + (2ρ + 4γ )φ22. (18)

Equations (9)–(14) are Einstein equations, while Eqs. (15)–(18) are Bianchi
identities. The other Einstein equations, Bianchi identities and “eliminant re-
lations” (Chandrasekhar, 1983) are identically satisfied or are function of the
equations listed earlier and/or consequence of the following identities

DY = −ρ Y, 	Y = µY

D β = ρ β, 	β = βµ.
(19)

that can be easily proved to hold.
Remark. One can partially check the correctness of the Einstein equations. By
summing and subtracting the equation obtained from the sum of Eqs. (9) and (14)
with the one obtained by summing Eqs. (11) and (13), and by using the explicit
expressions of ρ, µ, �, φ00, ψ2 one obtains

k φ̇ φ′ = 2
Ẏ ′

Y
− Y ′

Y
�̇
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ψ2 = Ÿ

Y
+ k

4

[
(Dφ)2 + (	φ)2 + 2

3
Dφ	φ − 2

3
m2

0φ
2

]
(20)

The first Eq. (20) is exactly the (tr) component of the Einstein field equation
(1) in the coordinate form (e.g. Zecca, 2004). The expression of ψ2 is coherent
with the analog expression of the Toman-Bondi model (Zecca, 1993, 2000).

To complete the scheme, one must take into account also the scalar field
equation (2). To that end, consider that ∇α∇α = ∇AȦ∇AȦ and that

∇AẊ∇AẊφ = ∂AẊ∂AẊφ +
[
�A

AẊB
+ �

Ẏ

ẎBẊ

]
∂BẊφ (21)

where ∇AȦ and ∂AẊ are the covariant and directional spinorial derivatives (8)
respectively. By expliciting the value of �C

AẊB
in terms of the spin coefficients

(Chandrasekhar, 1983; Penrose and Rindler, 1984) and taking also into account
the result (22), the scalar field equation (2) finally reduces to (compare with
Penrose and Rindler, 1984)

(	D + D	)φ + 2(ε − ρ) 	φ + 2(µ − γ )Dφ + m2
0φ = 0. (22)

Therefore, Eqs. (9)–(18) coupled to Eq. (22) remain to be solved.

3. TRAPPED SURFACES

The solution of the equations, even simplified as in the previous section, is
very difficult. As mentioned in Section 1, the problem has been diffusedly studied
and our object remains to give, as far as possible, explicit solutions. To that
end, some general considerations about light propagation and trapped surfaces
are useful. Suppose the tetrad (4) is subjected to a type III transformation (e.g
Chandrasekhar, 1983):

e
µ

1 → ê
µ

1 = A−1e
µ

1 , e
µ

2 → ê
µ

2 = Ae
µ

2

e
µ

3 → ê
µ

3 = eiχe
µ

3 , e
�µ

4 → ê
µ

4 = e
�µ

4 e−iχ (23)

the real functions A,χ being defined on the space–time manifold. If the functions
are chosen in such a way that the transformed ε spin coefficient vanishes, A−1ε −
2−1A−2 DA + 2−1iA−1 Dξ = 0 (e.g. χ = 0, D log |A| = 2ε, A = A(r, t)), then
k̂ = ε̂ = π̂ = σ̂ = 0 so that the ê

µ

1 vectors form a congruence of null geodesic
affinely parameterized: ê1µ;ν ê

ν
1 = 0 (Chandrasekhar, 1983; Sachs, 1961). The

non-trivial optical scalar is −ρ̂ and its variation along a geodesic g of the congru-
ence is

D̂ρ̂ = ρ̂2 + φ̂00. (24)

(ρ̂ = A−1ρ, D̂ = A−1D, φ̂00 = A−2φ00). Further information can be obtained
by following the argument considered by Penrose (1968). The area A of a small
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triangle in the space-like plane orthogonal to the direction of the geodesic g

satisfies the equations

D̂A1/2 = −ρ̂A1/2, D̂2 A1/2 = −A1/2 φ̂00 (25)

Along the geodesic one has also similar equations for the Y function

D̂Y = −ρ̂Y D̂2 Y = −Y φ̂00 (26)

where the second equation follows from the first one and from Eq. (24) and,
without loss of generality, one may consider Y > 0.

If ρ̂ > 0 in some point of the geodesic, then Eq. (25) implies that A1/2

necessarily decreases to zero and the “beam inevitably reaches a focal point Q”
(Penrose, 1968), thus revealing the existence of trapped surfaces and hence of
black hole. Equations (25) and (26) can be integrated along the geodesic and give

ρ̂ = −D̂ log
√
A = −D̂ log Y ⇒ A = aY 2 (27)

a a constant function along g. If p is the affine parameter of the geodesic, then Y (p)
is strictly decreasing and necessarily Y (p0) = 0 for some p0, as a consequence of
Eqs. (24), (26) and assumptions on ρ̂. On the other hand, D̂Y (p) cannot vanish
for p → p0 because otherwise the concavity of Y (p) would change sign for some
p < p0, a possibility prevented by the fact that D̂2Y ≤ 0. Therefore, from Eq.
(26), ρ̂(p) → ∞ by approaching Q. If also D̂2Y (p) does not vanish for p → p0

then also φ̂00 → ∞.
If on the other hand, ρ̂ is negative in a point of g, Y (p) is increasing in p,

and, on account of Eq. (26), it may tend to a finite or to an infinite value. Since the
function A is determined up to a sign, one has the fact that for every observer for
which the light rays focus there exists another observer for which there exist light
rays that do not focus, and conversely.

4. THE COMPLETELY STATIC CASE

The discussion is now restricted to the completely static case: φ = φ(r),
Y = Y (r), � = �(r). We now show that the solution is possible only if m0 = 0 in
which case it is also explicitly determined. By expliciting with respect to the spin
coefficients and the directional derivatives, the scalar field equation (22) becomes

φ′′ −
(

�′

2
− 2

Y ′

Y

)
φ′ − e� m2 φ = 0 (28)

Similarly, by expliciting Eq. (9) one gets

−Y ′′

Y
+ �′

2

Y ′

Y
= k

2
φ′2 (29)
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It is possible to obtain another expression of φ′2 by comparing Eqs. (10) and (12)
and expliciting

φ′2 = 2

k

1

Y 2
(Y ′2 − e�) (30)

Comparing Eqs. (29) and (30), one obtains a Bernoulli equation (compare with
Zecca, 2001)

Z′ − 2
(Y ′′

Y ′ + Y ′

Y

)
Z = −2

Z2

YY ′ , Z = exp �, (31)

whose solution is given by

e� = Y 2 Y ′2

Y 2 − b2
(32)

−b2 an arbitrary integration constant. Therefore, from Eqs. (30) and (32)

φ′ = ±ib

√
2

k

Y ′

Y
√

Y 2 − b2
,

φ′′ = φ′
(

�′

2
− 2

Y ′

Y

)
,

φ = φ0 ± i

√
2

k
sinh−1 b

Y
, (b2 < 0) (33)

(if b2 > 0, the expression of φ can be obtained from the substitution sinh−1 →
sin−1). By using the expression of φ′′ into Eq. (28) it is immediate to see that the
solution is not possible if m0 	= 0, while the scalar field equation is automatically
satisfied if m0 = 0. The static case has therefore solution only for massless scalar
field that depends on an arbitrary function. In Zecca (2001) it has been shown
that arbitrariness cannot be ruled out even by considering non-minimally coupled
version of the massless scalar field. The arbitrariness is similar to that of the
choice of the radial coordinate and it does not seem to have a particular physical
significance. By choosing the radial coordinate to be Y eliminates the arbitrariness
and in this case the space–time solution is

ds2 = dt2 − Y 2

Y 2 − b2
dY 2 − Y 2(dθ2 + sin2 θ d2ϕ) (34)

In correspondence to (34) and (33), one has

ρ = − 1√
2

Y ′

Y
e−�/2 ≡ − 1√

2

√
Y 2 − b2]

Y 2
(35)

that remains negative where the solution is acceptable. Therefore, according to the
considerations of the previous section, the light rays cannot focus.



392 Zecca

Remark If b2 > 0, one may be tempted to consider the metric (34) in regions
Y 2 < b2 where Y is not solution of our problem. These regions have peculiar
properties as it follows by studying the null geodesic from the Lagrangian

L = 1

2

(
ṫ2 − Y 2Ẏ 2

Y 2 − b2
− Y 2θ̇2 − Y 2 sin θ2ϕ̇2

)
(36)

(dot means here d/dτ , τ the proper time). By following Chandrasekhar (1983),
one may conclude that the geodesic is described in an invariant plane (say θ = π/2)
where

pt = E, pϕ = Y 2 ϕ̇2 = L

E2 =
(dY

dτ

)2 Y 2

Y 2 − b2
+ L2

Y 2
(37)

E, L integration constants, L the angular momentum about the z-axis. From
the last equation, it follows that solutions are possible not only for Y 2 ≥
max{b2, L2/E2} but also for Y 2 ≤ min{b2, L2/E2}. Therefore, in these last re-
gions radial light ray propagation (L = 0) is not possible. Instead non-radial light
propagation is possible but the light rays do not necessarily collapse in Y = 0.
Indeed a circular orbit, Y = Y0, E2 Y 2

0 = L2, exists that is solution of Eq. (37).
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